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Abstract-Employing a special class of basis functions. a Saint-Venant flellure function suitable for
the problem of the bending of a circular cylinder with 4N (N = 1,2,3.... ) circular cylindrical
cavities in the allial direction is obtained. It is assumed that the load passes through the centroid of
the symmetrical cross-section of the beam. It is also assumed that all conditions needl'li for the
Saint-Venant solution of the bending of prismatic bars with one end filled are met. The linearly
independent basis functions which automatically satisfy a homogeneous outer boundary condition
are derived in closed form. They arc generated from the integration of the products of trigonometric
functions and the Green's function for the solution of Poisson's equation with singularities sym
metrically located in four quadrants. Through shrinking the radius of the closed path of integration
and by certain limiting processes. the integrations arc performed analytically. The functions so
obtained are summed to closed forms by the employment of an analytic function ilnd its deriviltives.
The mathematical prollf for the continuity of. the functions and their derivatives ilcross the circle
joining the centers of the holes is presented. The inner boundilry condition(s) is (ilre) siltistied with
the point-by-pointtcchnique and method of leilst squilre error. Numericill results for the CilSC of iI

beam with four circular cylindricill cavities are given.

INTRODUCTION

Analytical solutions for the l1exure of circular cylindrical beams with one eccentric circular
cylindrical cavity. according to the Saint-Venant theory. have been obtained in a few
investigations. It was first suggested by Love (1906) that the classical Saint-Venantl1exure
functions may be found as series expansions in suitable curvilinear coordinates. Following
this suggestion. Young el al. (1918) wrote down the form of the solution in series for the
case in which the load is at right angles to the axis of symmetry of the cross-section. Later
on. Seth (1936) gave the solution for the l1exure functions for the cases where the load is
resolved along and perpendicular to the axis of symmetry. Stevenson (1949) solved the
general flexure problem for a hollow beam bounded by two eccentric circles. However. it
is believed that the analytical solution of the bending of a circular cylinder with multiple
cylindrical cut-outs has not yet been presented in the literature. In this investigation the
solution to the title problem is obtained in the following manner. First, the Green's function
for four symmetrically-located point sources in the circular region is derived. This Green's
function automatically satisfies a homogeneous outer boundary condition. The result is
now multiplied by appropriate trigonometric functions. and the products are integrated
over a small circular path. Shrinking the radius of the path of integration and employing
certain limiting processes. the integrations are analytically performed leading to linearly
independent basis functions in the form of infinite series. The series solutions for the basis
functions are then summed to closed form using an analytic function and its derivatives.
For the cases of eight or 12. or more cylindrical cavities one can repeat this process with
the symmetrically-located point sources being placed inside the new cut-outs. Next. the
aforementioned basis functions are multiplied by unknown constants and are added to the
well-known solution of the problem of the bending of a solid circular cross-section beam
given by Timoshenko and Goodier (1951) and SokolnikotT (1956). Finatly. the unknown
constants involved are determined by satisfying the inner boundary condition(s) numeri
catly. The technique employed here was briefly discussed by Naghdi (1988). However, in
this investigation the basis functions are reduced to much simpler forms. The simplification
has enabled the author to write a computer program which calculates the values of closed
form basis functions of any arbitrary order. With this program the problems of the bending
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of a cylinder with eight or 12 cut-outs. etc..... can easily be obtained. It is proved that the
basis functions and their derivatives are continuous across the circular line joining the
centers of the cut-outs. Numerical values of dimensionless shear stresses in the direction of
the load for the case of a beam with four cavities are presented.

~IETHOD OF SOLUTION

In the following, we shall discuss the fundamental sets of basis functions and the
solution for the case of a beam with four cylindrical cut-outs V'l = I). The basis functions
for N> I are obtained by placing the poles of the fundamental sets at the centers of the
new cavities and thus generating the appropriate solution.

Consider a prismatic cantilever beam whose cross-section is a multiply-connected
circular region with radius R having four symmetrically-located circular cut-outs. Choose
the centroidal nondimensional coordinate axes ~ = Xi R, IJ = Y/R as well as the special
polar coordinates p = r/ Rand 0 as shown in Fig. I such that

~ = II sin fJ,
O~p~1.

'I = - P cos fJ. (I)

It is assumed that the line of action of the load W coincides with the ~ axis.
According to the Saint- Venant theory of the bending of prism.ltic bars given in Sokol

nikotf (1956), the eljuation

(2)

must be satisfied and the boundary conditions

have to be fulfilled. Here in relation (3) \' is Poisson's ratio, <I> is Saint-Vcnant's llcxure

w

,,------+------"~-~-'--...>.-_-+----

Fig. I. Cross·scction of a cantilevcr bcam with circular cylindrical cavitics.
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function in dimensionless fonn. and ni are the directions of the outward nonnal to the outer
and inner boundaries. The function <I> is now sought in the fonn

(4)

in which <I> is the flexure function for the bending of a solid circular cross-section beam
given by Sokolnikoff (1956):

(5)

and <l>j and <l>J are sets of closed-fonn linearly-independent basis functions of Laplace's
equation which automatically satisfy the conditions

c<1lj
~p = O. J = O. 1.2•... ,
Ii at I' = I

c<J>J
-~-- = O. J = I, 2•... ,
01'

(6)

and have singularities at the centers of the cut-outs. The unknown constants Ao, A I"'"

8 1• B~, arc to be determined from the inner boundary condition.
For the derivation of(l)jand (IlJ the following technique is employed. First, the solution

of Poisson's equation suitable for the problem under consideration:

'"
V~(1) = L 5:15(1'-1'0) sin nO,

n· I.J.S

(7)

in which S: are the Fourier coefficients and 0 is the unit impulse function, is sought in the
form

'"
(1) = L /"(1') sin nO.

n.l.l.S

Substituting (8) in (7), employing the condition

d/,,(p) = 0 at outer boundary I' = I,
dp

(8)

(9)

and considering that /"(1') must be continuous at I' = Po, we find the function if> with
positive sources at (I' = 1'0,0 = 00 and 0 = 7t - 00) and negative sources at (I' = 1'0,0 = - 00

and 0 = 7t+Oo):

x; 25
$= L - R [pnp~+p-np~] sin nOo sin nO, for I' > Po

n.I.J.S 7tn

Xl

25 [ n -n n n]' 0 . 0(1) = L - R I' Po +1' Po Sin n 0 Sin n , for I' < Po, (10)
n.I,l.S 7tn

in which 5 is the magnitude of the concentrated sources.
Next, we shall generate certain basis functions <J>jand <J>J from the following integrals:
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<!>j = fcf>(p, 0, Po. 00 )£ cos JfJo dfJo. J = O. 1.2•...•

<!>J =fcf>(p, O. Po, 00 )& sin JfJo dfJo. J = 1.2, ... ,

( II)

(12)

in which the path of integration is around the center ofone of the four inner circular cavities
with parametric equations (see Fig. I)

Po = 0 0 (1 +£cos fJo), o~ = & sin fJo, ao = ellR,

o~ = 00 - 0, & = a small positive number. (13)

The analytical evaluations of the integrals in relations (II) and (12) are quite involved
for a finite value of &. However. it is possible to obtain these integrals when £ tends to zero.
Note that P and 0 are considered constants in these integrals and the tenns involved are
series like

~ (ppor. O' 0
L. -- san n san n o'

". I.J.~ n

We shall only show the integration involving series (14);

Xl [ il' pIt ]r J = r p"sinnO --!!.sinnOo&sinJ{Jodpo.
" .. 1.3,S 0 n

Substituting now eqn (13) into relation (15) we obtain

r ~ [ . 0 Oi2
'(I+&COS fJ o)". . fJ . fJ dt'} ]

J = L. tI'oP" san n cos n n san (n& san 0)& san J 0 Jo
".I.J.S 0

( 14)

(15)

'to [ 12
• (1 + & cos fJ )" ]+ L tI'oP" sin nO sin nO 0 cos (m: sin pole sin JfJo dfJo . (16)

". u.~ 0 n

Expanding sin (ne sin {Jo), cos (ne sin {Jo) in the Fourier series given by Dwight (1957),
(I +& cos fJo)" in powers of &cos Po, and considering that the second integral in relation
(16) is zero, we get:

in which Jo(ne). J 2(ne) , '" are the Bessel functions of the first kind. and OCO'OC.,OC2•••• arc
obtained from the binomial expansion of (I + & cos fJo)" :

I 2 I ) ,
oc2=21(n -n), (X)=3l(n -3n-+2n),

(18)

Note that the terms which are the results of the product of the two brackets in relation (17)
will produce a nonzero integral only if they contain the sin JPo term. As £ tends to zero,
and the smaller tenns of higher order are dropped. analytical integration leads to
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r l =~£ f ~p"[sinnPI+sinnP2]'
"- '.3.S

743

(19)

Evaluating other integrals in the same fashion. and combining the results. we obtain a set
of linearly-independent basis functions as given in the following:

"" I
<1>1 = L - [n(pao)" +n(ao/p)"][cos np. -cos np2].

"_ U,S n

"" I
<1>1 = L - [(2n 2-n)(pao)" + (2n 2-n)(ao/p)"][cos np I -cos nP2].

"_ u.s n

"" I<l>t = L -[(4n3-3n2+2n)(pao)"+(4nJ-3n2+2n)(ao/p)"][cosnp.-cosnP2]'
"_ I.J.S n

.................... for p > ao. J = 0.1.2•.... (20)

Similarly. the functions <I>~. <1>1•... for p < ao• as well as the functions <l>J for both regions
p > ao and p < ao• may be easily written. However. for the sake of brevity they shall not
be reproduced here.

Note that for simplicity. certain constant coefficients such as 1t. S. R. eJ have been
dropped from the basis functions.

Finally. it is seen from relation (20) that the basis functions can be written in much
simpler forms:

ce, I
<1>1 = L - [nJ(pao)" +nJ(ao/p)"] [cosnPI -cosnP2].

"_I,J,Sn

for p> ao. J = 0.1.2.... (21)

<r, I
<1>1= L -[nJ(pao)"+(-I)JnJ(p/ao)"][cosnPI-cosnP2].

"_ u.s n

for p < ao. J = O. I. 2. . .. (22)

for p>ao. J=I.2.3.... (23)

for p < ao• J = 1.2. 3. . . . . (24)
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It is seen from eqns (21) through (24) that the first partial derivatives with respect to p of
the basis functions $J. $J contain series such as

x J (cos nf3) x J (cos nf3)L n (pao)" . fJ' L n (ao,p)" . f3'
n~U.5 smn n~U.5 SInn

These series in turn can be rewritten in the form:

~ J _ . (cosnf3 )
1.., fl e "". .

n= 1.3.5 StO nf3

in which ;. is a positive number which takes values:

I. = -In (pall)'

;. = -In (all/p).

;. = -In (p/lll))'

~ J(')n (cos nf3)1.., n p,ao . .
,,=1.3.5 smnf3

(25)

(26)

(27)

We shall show in the following that the series given in eqn (26) can be summed in closed
forms. Consider the analytic function (see Gradshteyn and Ryzhik. 1965)

<.

F(;) = !+ L (' on: = ! coth (;/2). ; = ;. + ill, ;. > O. i =J- I. (28)
n-I

Since the derivatives of an analytic function arc still analytil: functions. we differentiate (28)
to obtain

r. I I
n~1 n con: = 4 sinl;! (~72)'

r. '-n' I cosh (;/2)L we' =-;---T-;:,-'
n_ I 4 stOh (;/-)

'.C _. [3 coth! (=/2) - I]L n.1 e n. = -'---:-:0-

n- I 8 sinh! (:/2) ,

(29)

The real and imaginary parts of the functions involved in eqn (29) produce the c1osed
form representations of the series given in relation (26).

We have developed a recurrence formula for the nth derivative of the function F(:)
and programmed it. Thus, the closed-form values of the basis functions $J and $J are
available for any given J.

PROOF OF THE CONTINUITY OF THE FUNCTIONS

The apparent forms of $1 or $J for p > ao and P < (/0 raises the question of the
continuity of these functions and their partial derivatives at I' = Po. We shall show in
the following that actually. the two forms of basis functions for I' > Po and I' < Po are
mathematically identical when p tends to Po, and therefore the basis functions and their
partial derivatives of any order are continuous at p = Po. Noting relations (II) and (12),
it shall be sufficient to show this continuity for the Green's function <I>. Rewriting series
(10), we have
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s ~ {I . . }= 2 R L. - [e -.A, + e-·"][cos n{3, - cos n({31 + 1t) -cos n{32 +cos n ({32 + 1t)]
1t ._ 1.2.3 n
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for I' > Po, (30)

s ~ . .
=2 R L. {[e-·A'+e-·A'][cosn{3l-cosn({3I+1t)-cosn{32+cosn({32+1t)]}

1t •• 1.2.3

for I' < Po, (31)

It was shown by Naghdi (1973) that

"C) 1 cosh ;.-1L -e-·).cosn{J=!ln 'h), 11- ln (l-e-).) for ).>0. (32)
._ 1.2.J" cos . - cos

Employing (32) in (30) and (31), we obtain

<I> = S {In [(COSh ~., + cos {J 1)(cosh ). :"+_C_r:.S{1I!]
41tR (cosh 1-1 -cos II, )(cosh ;'2 -cos {J I)

-In [(COSh_;..:-t::~r:J.:-~22.<~~.s_~;.:..--+:~o_sP_22]} for p > Po. (33)
(cosh ;., -cos f/!)(cosh ;'2 -cos 11 2 )

<i> = ~ {In [(COSh ;'1 +cos f/ I )(cosh ;'J +cos {31 )]
41tR (cosh ;'1 - cos IJ d(cosh A.) - cos f/ d

_ [(COSh ;., +cos fJ2)(cosh ;.) +cos {J2)]}
In (cosh)" -cos IJ 2)(cosh ;.) -cos IJ 2 )

for p < Po. (34)

Comparing the two expressions (33) and (34), and noting that ;.2 = -A.) when I' tends to
Po, it is obvious that these relations are mathematically identical. Therefore, with the
exception of the points of application of the source such as p = Po. 0 = 00 equivalent to
;'2 = ;.) = O. and IJ 2 = O. the limits for the function <I> and its partial derivatives of any order'
exist as I' tends to Po.

NUMERICAL RESULTS

In the following, we shall give some numerical results for the case ofa beam with four
cavities symmetrically located with respect to the eand '1 axes. For all the numerical results
presented here, we choose the value of Poisson's ratio v as 0.3. The function <I> given in
relation (4) automatically satisfies the outer boundary condition, and it is an odd function
with respect to eand even with respect to '1. Therefore it is only necessary to satisfy the
inner boundary condition at the surface of one of four cavities. This is accomplished as
follows. Retaining P basis functions in the series solution (4) and satisfying the boundary
condition at M > P points on one of the four inner boundaries, a system of M by P linear
algebraic equations is obtained. The system is normalized and solved approximately by the
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Table I. Comparison of the prescribed inner boundary condition (3) with
those which take place with the solution for various Po = K1t/ 18. and for the

case of Q" = 0.5. U= 1[/4 and jj = 0.1

K Prescribed values

I 0.376931
3 0.249234
5 0.100055
7 -0.0329253
9 -0.127994

II -0.182165
13 -0.204280
15 -0.205761
17 -0.195104
19 -0.176292
21 -0.147850
23 -0.102319
25 -0.0289317
27 0.0784839
29 0.211212
31 0.341290
33 0.429620
35 0.444112

Values which are obtained with the solution

0.376927
0.249240
0.100053

-0.0329302
-0.127986
-0.182168
-0.204285
-0.205753
-0.195109
-0.176294
-0.147843
-0.102323
-0.0289329

0.0784889
0.211209
0.341287
0.429625
0.444110

employment of the method of least square error given by Hildebrand (1956) leading to the
determination of constants Ao. A" ...• B" B2••••• For all of the numerical results given
here P = 12 and M = 18. Since the outer boundary condition is automatically satisfied. the
satisfaction of the inner boundary condition is a measure of the accuracy of the solution.
In Table I the satisfaction of the inner boundary condition is shown for the case where
all = 0.5. (J = 7[/4 and p == f/R = 0.1.

We shall define the stress concentration So as:

(35)

in which W is the load in the ~ direction. A is the area of the hollow cross-section. and' is
the axis perpendicular to the ~" plane with' = 0 at the fixed end of the cantilever. The

E

w

T

Fig. 2. Positions of lines AB. CD. OT along which the values of S, are given.
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0.80~--...J:o---~---:l=-----:l=--

Fig. 3. The values of the stress concentration S. along AB for Do =0.5. iT = 7C/4 and p == 0.1.

2.4

O.IlO~---~--~~--~----::'=--

Fig. 4. The values of the stress concentrdtion S. along CD for Do - 0.5. (J - 7C/4 and jJ - 0.1.
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1.2

In" 0.8

0.4

o
E,

Fig. 5. The values of the stress concentration S. along OT for Do - 0.5. (J == 7C/4 and p == 0.1.
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0.06 0.4 0.5 0.8 0.7

Bo

Fig. 6. The values of the stress concentration S, versus ao for p = 0.11 and three different values of
IJ = n/8, IJ = n/4 and IJ = 3n/8.

shear stress t,: in relation (35) is obtained from the following expression, given in Sokol
nikoff (1956):

W [C<I1 I" t 'Jt·.==- --+2v}c'+(I-,v)Y'
" 2(1 +v)lr ax " (36)

in which Iris the area moment of inertia with respect to the Y uxis.
In Figs 3 und 4 the values Qfthe stress concentrution S, ulong A B ,lOd CD (see Fig. 2) ure

plotted versus the dimensionless distances YI == 17Y I /AB,und Y2 == 17Y2/CD,respectivcly.
For both cases au == 0.5, (J == n/4 and p == 0.1. In rig. 5 the values of the stress concentration
S, 'along OT are graphed versus ~ I == 18~ for the case where a o == 0.5. 11 == n/4 and p == 0.1.
These numerical results indicate that S, is maximum at point B. This maximum value grows
when the boundaries of the two circular cut-outs with angles /1 und n: - (J come close to each
other and the ~ axis. In Fig. 6 the values of stress concentration S, versus all arc plotted for
the cases of p == 0.12 and three different values of tJ == n/8. tJ == n/4 and tJ == 3n/8.

CONCLUSION

The numerical results obtained in this investigation arc very accurate and well within
the usual engineering approximations. It is seen from Table I that the relative error in
satisfaction of the inner boundary condition is of the order of lOs. However, for bigger
values of p and when the boundaries of the cavities arc closer to the ~ axis. this relative
error is somewhat higher. For example, for the case where a o == 0.5. tJ == 3n:/8. p == 0.12 the
relative error is of the order of 10- 2. The aforementioned error discussion is the only measure
in judging the correctness and accuracy of the solution presented in this investigation. This
is due to the fact that there are no other published results for the bending of a cantilever
with the geometry considered here. The closed-form basis functions lead to the consumption
of much less computer time and to much more accurate results.

Finally, it is believed that the problem of a semicircular beam with cavities may be
solved with similar basis functions.
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